Computing intersections, decomposing algebraic sets, the genus of a curve and parametrization of rational curves
نویسنده
چکیده
This is the manuscript for talks given in a seminar on computer aided geometric design at the University of Saarland. The aim of the talks was to introduce the basic concepts of algebraic geometry, the computational tools, i.e. resultants and Groebner bases, and their geometric applications.
منابع مشابه
Advances in Algebraic Geometric Computation
Algebraic curves and surfaces play an important and ever increasing role in computer aided geometric design, computer vision, and computer aided manufacturing. Consequently, theoretical results need to be adapted to practical needs. We need efficient algorithms for generating, representing, manipulating, analyzing, rendering algebraic curves and surfaces. In the last years there has been dramat...
متن کاملRadical parametrization of algebraic curves and surfaces
Parametrization of algebraic curves and surfaces is a fundamental topic in CAGD (intersections; offsets and conchoids; etc.) There are many results on rational parametrization, in particular in the curve case, but the class of such objects is relatively small. If we allow root extraction, the class of parametrizable objetcs is greatly enlarged (for example, elliptic curves can be parametrized w...
متن کاملReal Parametrization of Algebraic Curves
There are various algorithms known for deciding the parametrizability (rationality) of a plane algebraic curve, and if the curve is rational, actually computing a parametrization. Optimality criteria such as low degrees in the parametrization or low degree field extensions are met by some parametrization algorithms. In this paper we investigate real curves. Given a parametrizable plane curve ov...
متن کاملApproximate parametrization of plane algebraic curves by linear systems of curves
It is well known that an irreducible algebraic curve is rational (i.e. parametric) if and only if its genus is zero. In this paper, given a tolerance ǫ > 0 and an ǫ-irreducible algebraic affine plane curve C of proper degree d, we introduce the notion of ǫ-rationality, and we provide an algorithm to parametrize approximately affine ǫ-rational plane curves, without exact singularities at infinit...
متن کاملRational Curves
Rational curves and splines are one of the building blocks of computer graphics and geometric modeling. Although a rational curve is more exible than its polynomial counterpart , many properties of polynomial curves are not applicable to it. For this reason it is very useful to know if a curve presented as a rational space curve has a polynomial parametrization. In this paper, we present an alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008